Cardiovascular disease is now the most common cause of death worldwide. Lipid levels are a metabolic risk factor for cardiovascular disease and abnormalities in plasma lipoprotein classes, and derangements in lipid metabolism rank among the most firmly-established and best-understood risks factors for atherosclerosis [1]. Plasma cholesterol levels are regulated by the absorption of dietary cholesterol, excretion of cholesterol via faecal sterols or bile acids, cholesterol biosynthesis, and removal of cholesterol from circulation. Numerous previous studies have reported on the beneficial effects of hepatic 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase and acyl-CoA: cholesterol acyltransferase inhibitors of hypercholesterolaemia and atherosclerosis [2,3]. Low-density lipoprotein cholesterol (LDL-C) transports cholesterol from liver to tissues, whereas high-density lipoprotein cholesterol (HDL-C) facilitates the translocation of cholesterol from the peripheral tissues to the liver for catabolism. Therefore, HDL-C has a useful effect in reducing tissue cholesterol and an elevated ratio of HDL-C in serum is suggested together with a decreased level of LDL-C to reduce the risk of cardiovascular diseases [4].

In recent decades, it has been shown that a high-cholesterol level and a high ratio of saturated and monounsaturated to polyunsaturated fatty acids in the blood predisposes patients to vascular diseases, whereas a high dietary intake of vegetables and fruits has the opposite effect [5,6]. Similarly, it was reported that the intake of flavonoids inversely correlates with the plasma total cholesterol and LDL-C concentrations in human beings [7]. Flavonoids are dietary phenolic compounds that are widely distributed in nature and are ubiquitous in plants, fruits, seeds and vegetables. They possess anti-inflammatory, antiviral, antioxidant, hepatoprotective, antithrombotic, anticancerogenic, and other biological effects [6].

Rutin (3, 3′, 4′, 5, 7-pentahydroxyflavone-3-rhamnoglucoside, fig. 1) is a flavonoid of the flavonol type. Rutin is found in many typical plants such as buckwheat and apples. It is also an important dietary constituent of other foods and plant-based beverages [8]. It was reported that rutin has several pharmacological properties including antioxidant, anticarcinogenic, cytoprotective, antiplatelet, antithrombic, vasoprotective and cardioprotective activities [9–14]. Moreover, rutin was found to be a neuroprotective agent and can
ameliorate ischaemic reperfusion injury in the heart, brain, and skeletal muscle [15–19]. Rutin was identified to be the major LDL antioxidant compound of mulberry in an in vitro study [20].

Therefore, in this study we examined the hypocholesterolaemic effects of chronic administration of rutin in rats. It was predicted that rutin would show hypocholesterolaemic effects on the lipid profile and liver tissue because of its properties.

Material and Methods

Animals. Male Wistar rats (250–300 g) were obtained from the Razi Institute (Karaj, Iran) and housed in groups of four per cage under standard laboratory conditions. They were kept at constant room temperature (21 ± 2°) under a normal 12 hr light : 12 hr dark regime with free access to food and water. All animal experiments were carried out in accordance with the European Communities Council directive of 24 November 1986 (86/609/EEC) in such a way as to minimize their suffering.

Chemicals. Rutin and cholic acid were purchased from Sigma and Merck. The other drugs used in this study was lovastatin (Tehran Chemic Pharmaceutical Co, Iran), propylthiouracil (Iran Hormone, Tehran, Iran), ketamine (Rotexmedica, GmbH, Germany), and xylazine (Loughrea Co, Galway, Ireland).

Rat model of hypercholesterolaemia. In rats, hypercholesterolaemia was induced by gavage by daily administration of 1 ml/100 g body weight of a cocktail containing in 1 l peanut oil: 100 g cholesterol, 30 g propylthiouracil and 100 g cholic acid over a period of 28 days. The test compounds were administered simultaneously with the cocktail [21]. The rats were divided into six groups of 10 animals in each group. Group I received peanut oil orally (1 ml/100 g). Group II received cocktail only as described above. Group III received cocktail and lovastatin (10 mg/kg). Group IV received cocktail and rutin (10 mg/kg); Group V received cocktail and rutin (100 mg/kg); Group VI received cocktail and lovastatin (10 mg/kg) and rutin (100 mg/kg).

Laboratory testing. The lipid profile was analysed using commercially available kits for HDL-C, LDL-C, total cholesterol, and triglycerides (Pars Azmoon, Iran) and expressed in mg/dl. Serum total T₄ was determined by electrochemiluminescence immunoassay (ECLIJA, Roche, Germany) and expressed in nmol/l. Plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were analysed using biochemical analysis kits (Pars Azmoon, Iran) and expressed in IU/l.

Table 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
<th>Group IV</th>
<th>Group V</th>
<th>Group VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC (mg/dl)</td>
<td>143 ± 4</td>
<td>374 ± 2*</td>
<td>319 ± 1.5*</td>
<td>295 ± 16.4</td>
<td>308 ± 12*</td>
<td>305 ± 2*</td>
</tr>
<tr>
<td>TG (mg/dl)</td>
<td>80 ± 6</td>
<td>111 ± 14</td>
<td>102 ± 3</td>
<td>86 ± 18</td>
<td>95 ± 15</td>
<td>97 ± 8</td>
</tr>
<tr>
<td>LDL-C (mg/dl)</td>
<td>76 ± 3</td>
<td>281 ± 2*</td>
<td>114 ± 2*</td>
<td>145 ± 7*</td>
<td>147 ± 8*</td>
<td>126 ± 5*</td>
</tr>
<tr>
<td>HDL-C (mg/dl)</td>
<td>49 ± 3</td>
<td>42 ± 1</td>
<td>38 ± 5</td>
<td>49 ± 1</td>
<td>35 ± 3</td>
<td>37 ± 3</td>
</tr>
<tr>
<td>T₄ (nmol/l)</td>
<td>62 ± 2.3</td>
<td>12.6 ± 0.3*</td>
<td>12*</td>
<td>10.5 ± 0.1*</td>
<td>10.2 ± 0.3*</td>
<td>8.7 ± 0.5*</td>
</tr>
</tbody>
</table>

Group I: Vehicle; Group II: Cocktail; Group III: Cocktail + lovastatin (10 mg/kg); Group IV: Cocktail + rutin (10 mg/kg); Group V: Cocktail + rutin (100 mg/kg); Group VI: Cocktail + lovastatin (10 mg/kg) + rutin (100 mg/kg).

Results

Twenty-four hours after the last gavages, the rats were anaesthetized with an injection of ketamine (60 mg/kg intraperitoneally) and xylazine (6 mg/kg intraperitoneally). Blood samples were taken from the left ventricle of the heart and collected into the test tubes to obtain serum. Samples were subsequently centrifuged for 10 min. (4000 xg). Serum was separated and used for the assessment of total cholesterol, LDH-C, LDL-C, triglycerides, AST and ALT.

Liver histopathological assessment. The livers were removed, weighed and then cut into small pieces. Liver sections were fixed in 10% formalin, dehydrated in gradual ethanol (50–100%), cleared in xylene, and embedded in paraffin. Sections (4–5 μm thick) were prepared and stained with haematoxylin and eosin dye for histopathological examination and observed under a microscope at a magnification 100× [22].

Statistics. The data were expressed as mean values ± S.E.M and tested with ANOVA followed by the multiple comparison test of Tukey-Kramer. Results with P < 0.05 were considered significant.
I was significant (P < 0.05) (fig. 2). Moreover, groups IV and V had a decreased plasma ALT compared to group II by 23.1% and 41%, respectively (fig. 3).

Plasma AST in group III was reduced by 55.2% compared to group II. The difference between groups III and I was not significant (fig. 2). Plasma ALT was reduced in group III by 9.8% compared to group II. Moreover, the differences between groups III and I were significant (P < 0.01) (fig. 3).

Plasma AST in group VI was reduced by 43.5% compared to group II. The difference between groups VI and I was not significant (fig. 2). Also, plasma ALT was reduced in group VI by 43.3% compared to group II and the difference between groups VI and I was not significant (fig. 3).

Effect on liver weight : body weight ratio.

The ratio of liver weight : total body weight was significantly higher in group II than in group I (P < 0.01) (table 2). Moreover, liver weight : body weight ratio was not different between groups V and VI in comparison with group I.

Histological results.

In group I, a normal lobular pattern, hepatic cells with well-preserved cytoplasm, a prominent nucleus, and a well-visualized central vein were observed (fig. 4A). In group II, microvesicular fatty changes, small-droplet fat in hepatocytes with centrally located nuclei, mononuclear inflammatory infiltration, and venous congestion were observed (fig. 4B). In group III, small-droplet fat in hepatocytes of zone III and mononuclear inflammatory infiltration was observed (fig. 4C). In group IV, steatosis in zone III and mononuclear inflammatory infiltration was observed (fig. 4D). In group V, no steatosis or inflammation was found. However, venous congestion was occasionally observed (fig. 4E). In group IV, the appearance of the cells was similar to the control group. Steatosis and inflammation were not found (fig. 4F).

Discussion

Rats are generally considered to be resistant to naturally-occurring and experimentally-induced atherosclerosis [23]. High doses of dietary cholesterol combined with bile acids and experimentally induced hypothyroidism have been demonstrated to lead to the development of atherosclerotic lesions in rats [24]. Therefore, in the current study hypercholesterolaemia was induced in rats, evident from the total cholesterol level in plasma after feeding the animals a

Table 2.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
<th>Group IV</th>
<th>Group V</th>
<th>Group VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>LW : BW (mg/g)</td>
<td>40.3 ± 0.7</td>
<td>61.4 ± 3**</td>
<td>60.4 ± 3**</td>
<td>65.4 ± 3*</td>
<td>52.2 ± 4</td>
<td>55.3 ± 1.6</td>
</tr>
</tbody>
</table>

Group I: Vehicle; Group II: Cocktail; Group III: Cocktail + lovastatin (10 mg/kg); Group IV: Cocktail + rutin (10 mg/kg); Group V: Cocktail + rutin (100 mg/kg); Group VI: Cocktail + lovastatin (10 mg/kg) + rutin (100 mg/kg).

Values are the mean ± S.E.M. for 10 rats. *P < 0.05, **P < 0.01 compared to group I, Tukey-Kramer test.

© 2009 The Authors

Journal compilation © 2009 Nordic Pharmacological Society. Basic & Clinical Pharmacology & Toxicology, 104, 253–258
high-cholesterol diet. Serum total T_4 of all groups was significantly reduced compared to group I, which showed that all study groups had hypothyroidism (except the vehicle group). After the model was established, the possible hypercholesterolaemic effects of chronic administration of rutin alone or with lovastatin were examined in rats. In this context, the serum lipid profile, liver enzymes, and tissue were investigated.

According to the results, the effects of different doses of rutin (10 and 100 mg/kg) and lovastatin with rutin (100 mg/kg) on reducing plasma total cholesterol were greater than lovastatin alone. The effects of rutin groups and lovastatin and lovastatin with 100 mg/kg rutin on reducing LDL were statistically equal. However, it seems that the effects of lovastatin alone and lovastatin with 100 mg/kg rutin were greater than administration of rutin alone.

A hypercholesterolaemic diet caused an increase in oxidative stress in the liver, resulted in an increase in AST and ALT levels, and induced fatty liver [25,20]. Therefore, in the present study, ALT and AST, apart from cholesterol, were also evaluated to reveal the protective effects of rutin on hepatic enzymes. As a result, it seems that supplementing a high-cholesterol diet with 100 mg/kg rutin or lovastatin and 100 mg/kg rutin could lower AST and ALT activities more than 10 mg/kg rutin or lovastatin alone. As the liver weight:body weight ratio indicates, it is possible that animals that received rutin 100 mg/kg alone or with lovastatin with their hypercholesterolaemic diets have less fat accumulation in the liver.

In other studies, the influence of the flavonoids on the endogenous regulation of cholesterol biosynthesis has been
discussed and antiatherosclerotic effects of flavonoids have been explained in several studies [6,27,28].

On the other hand, quercetin, one of the metabolites of rutin, lowered the plasma lipid and hepatic cholesterol levels in high-cholesterol-fed rats. Quercetin also decreased HMG-CoA reductase activity. It was suggested that supplementation of quercetin dihydrate and gallate promotes an increase in faecal steroids, which in turn leads to a decreased absorption of dietary cholesterol as well as lowered plasma and hepatic cholesterol [29,30]. Thus, it is possible that rutin, by converting to its active metabolite, decreased HMG-CoA reductase activity and decreased absorption of dietary cholesterol.

Moreover, both rutin and quercetin have an antioxidant effect, and rutin showed clear synergism with quercetin in an in vitro study [31]. It has also been reported that quercetin and rutin could suppress lipid peroxidation in biological membrane systems such as mitochondria, erythrocytes, and others [32,33]. Thus, the other possibility for the hepatoprotective effects of rutin may be related to antioxidant activity to prevent liver injury. However, further studies are needed to clarify the exact mechanism.

Another possible explanation for the decreased liver damage and lower liver enzymes for the 100 mg/kg rutin alone group or the group with rutin and lovastatin along with a high-cholesterol diet in animals depends on the anti-inflammatory effects of both drugs. Anti-inflammatory effects of rutin were found in several studies [34,35]. Furthermore, it is suggested that rutin has effective anti-inflammatory effects in the chronic model of inflammation [36]. Statins also have an anti-inflammatory effect that is independent of changes in the cholesterol level [37,38]. Furthermore, the neuroprotective effects of statins against a variety of CNS diseases have been studied [39,40].

In conclusion, our findings indicate that 100 mg/kg rutin alone or with lovastatin supplementation lowered liver weight as well as plasma total cholesterol and LDL. The hepatic histopathological results reflect a correlation of rutin and lovastatin combination with both liver weight and the levels of plasma total cholesterol and LDL-C. However, histopathological results show that liver injury in rats given 100 mg/kg rutin with lovastatin was less than in rats given 100 mg/kg rutin alone. Our data clearly indicate that the antihypercholesterolaemic effects of rutin in an animal model increased in combination therapy with lovastatin. It seems that several mechanisms may contribute to the hypercholesterolaemic effects of rutin.

Acknowledgements
This work was supported by a grant from QMDRC, Qazvin, Iran. The authors are grateful for this financial support.

References
5 Bok SH, Lee SH, Park YB, Bae KH, Son KH, Jeong TS et al. Plasma and hepatic cholesterol and hepatic activities of 3-hydroxy-3-methyl-glutaryl-CoA reductase and acyl CoA: cholesterol transferase are lower in rats fed citrus peel extract or a mixture of citrus bioflavonoids. J Nutr 1999;129:1182–5.

