Effect of PPARγ His447His polymorphism on oocytes and fertilization in IVF

M. Sahmani* M. Noori** E. Sakhinia*** L. Farzadi**** M. Sirati-Saabet***** R. Najafipour******

* MSc of Biochemistry, Molecular and Cellular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
** Associate Professor of Biochemistry, Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
*** Assistant Professor of Genetics, Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
**** Associate Professor of Gynecology, Tabriz University of Medical Sciences, Tabriz, Iran
***** Assistant Professor of Biochemistry, Qazvin University of Medical Sciences, Qazvin, Iran
****** Assistant Professor of Genetics, Molecular and Cellular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran

Abstract

Background: Genetic factors play an important role in women fertility and embryonic development which may contribute to the efficacy of assisted reproduction techniques.
Objective: The aim of this study was to investigate the effect of peroxisome proliferator-activated receptor γ (PPARγ) His447His polymorphism on oocytes and fertilization in women undergoing IVF.
Methods: Blood samples were obtained from 98 IVF patients referred to Tabriz Alzahra Hospital. Samples were analyzed for the PPARγ gene polymorphism using polymerase chain reaction-restriction fragment length polymorphism-based methods. Multivariate analyses were used to test the independence of associations between the number of mature oocytes and the number of oocytes fertilized as outcome variables and polymorphism of PPARγ gene.
Findings: Correlation analysis showed a significant inverse correlation between the age of women and the number of mature oocytes retrieved (r=-0.37, P=0.001) and oocytes fertilized (r=-0.25, P=0.015). The ratio of the number of mature oocytes to oocytes fertilized was significantly (P<0.05) increased in carriers of the rare alleles than homozygous wild-type genotypes. The association of His447His polymorphism (P=0.003) remained statistically significant after adjustment for confounding factors in the multivariate analyses.
Conclusion: This study presents evidences that the His447His polymorphism of PPARγ plays an important independent role in fertilization in vitro and thus possibly in female fertility.
Keywords: in vitro Fertilization, PPAR, His447His Polymorphism

Corresponding Author: Reza Najafipour, Molecular and Cellular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
E-mail: r_najafipour@yahoo.com
Tel: +98-9127991442
Received: 1 May 2010
Accepted: 2 Nov 2010