Colourimetric-based method for the diagnosis of spinal muscular atrophy using gold nanoprobes

Hossein Ahmadsa-Yazdi¹, Mohammad Reza Hormoz-Zahezd²3, Ali Reza Abadi⁴, Mohammad Hossein Sanati⁵, Bahram Kazemi⁶7

¹Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
²Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran
³Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 14589-89694, Iran
⁴Department of Health and Community Medicine, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
⁵Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahraz-e-Pajooheh, 15th km, Tehran-Karaj Highway, Tehran 14965-161, Iran
⁶Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19395-4719, Iran
⁷Department of Biotechnology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19395-4719, Iran
E-mail: kazemi@smbu.ac.ir

Abstract: Although numerous molecular methods for spinal muscular atrophy (SMA) detection have been exploited, most of them are laborious, time consuming and costly. Recently, gold nanoparticles (AuNPs) have attracted attention in the field of colourimetric bioanalysis, because AuNP aggregation can be tracked with the naked eye as well as ultraviolet-visible (UV–vis) peak analysis. Here, based on a non-cross linking platform, a colourimetric-based method was used to evaluate the capability of thioclate oligo-AuNPs (Au nanoprobes) to distinguish between normal individuals, carriers and those with SMA. In this platform, removal of the repulsive force of the Au nanoprobes using high salt concentration solutions forced them to aggregate. Amplified DNA products from 20 blood samples were hybridised with the Au nanoprobes. UV–vis spectra and peak analysis ratios of SMA-positive samples revealed that, following salt addition, the unhybridised Au nanoprobes progressively aggregated and their absorption peak shifted to longer wavelengths (P < 0.05), observed as a colour change from red to violet-purple. In contrast, colourimetric discrimination between normal and carrier samples following salt addition was not possible because of the small differences in their spectra and aggregation indices. Using this method, patients can be screened in <30 min.

1 Introduction

One of the most prominent autosomal-recessive genetic abnormalities is spinal muscular atrophy (SMA) [1]. This fatal disorder is characterised by the lack or malfunction of the survival of motor neuron (SMN) protein. SMN proteins are encoded by the SMN genes, SMN1 and SMN2, located on chromosome 5q13 [2]. These genes differ by five nucleotide base pairs (one in exon 7, exon 8, and intron 6; and two in intron 7). A crucial transition (C → T) in exon 7 of SMN2 compared with SMN1 produces non-carboxyl-terminal proteins that cannot oligomerise. Hence, these non-functional SMN2 proteins cannot effectively form stable ribonucleoprotein complexes that consequently cannot function normally in neuromuscular growth and maturation [3]. Normal individuals are homozygous for SMN1 and SMN2 genes, but the carrier and affected cases are heterozygous and homozygous for SMN deletion, respectively. In 94% of patients who have a homozygous deletion of SMN1, the motor neurons degenerate and the disease leads to progressive paralysis or death.

Owing to the severity and frequency of SMA and the high number of carriers (1/10 000 and 1/50, respectively), various molecular techniques have been developed for its detection, including polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) [4], allele-specific PCR [5], multiplex ligation dependent probe amplification [6], matrix-assisted laser desorption ionisation-time of flight mass spectrometry [7], denaturing high-performance liquid chromatography [8], fibre-optic biosensor [9], real-time PCR [10] and capillary electrophoresis [11]. However, few clinical laboratories carry out these tests because of the cost, time and complexity of the assays. Therefore, development of a cheap, rapid and simple method is necessary.