The effect of myricetin on the expression of b-catenin gene in melanoma cells (A375)

Abdolmaleki, fereshte and Ahmad Pour -yazdi, Hossein and Gheibi, Dr. Nematollah (2016) The effect of myricetin on the expression of b-catenin gene in melanoma cells (A375). Masters thesis, qazvin university of medical science.

[img] PDF (چکیده پایان نامه فرشته عبدالملکی)
Download (59kB)
Official URL: http://www.qums.ac.ir


1. World Health Organization. February 2014. Retrieved 10 June 2014. 2. World Cancer Report 2014. World Health Organization. 2014. pp. Chapter 1,3. ISBN 9283204298. 3. Tomic T, Botton T, Cerezo M, Robert G, Luciano F, Puissant A, et al. Metformin inhibits melanoma development through autophagy and apoptosis mechanisms. Cell death & disease. 2011; 2 (9):e199. 4. Mueller D, Bosserhoff A. Role of miRNAs in the progression of malignant melanoma. British journal of cancer. 2009;101(4):6,-551 5. Targeted Cancer Therapies". NCI.25-04-2014. Retrieved 11 June 2014, 6. "Health Claims Meeting Significant Scientific Agreement" US Food and Drug Administration. Retrieved 8 November 2013. 7. Duthie S, Dobson V. Dietary flavonoids protect human colonocyte DNA from oxidative attack in vitro. European Journal of Nutrition. 1999;38(1):-28 34, 8. Williamson G, Faulkner K, Plumb G. Glucosinolates and phenolics as antioxidants from plant foods. European journal of cancer prevention: the official journal of the European Cancer Prevention Organisation (ECP). 1998; 7(1):21,-17 9. Plaumann B, Fritsche M, Rimpler H, Brandner G, Hess RD. Flavonoids activate wild-type p53. Oncogene. 1996; 13(8):14,-1605. 10. Ren W, Qiao Z, Wang H, Zhu L, Zhang L. Flavonoids: promising anticancer agents. Medicinal research reviews.2003;23(4):34,-519 11. Gerritsen ME. Flavonoids: inhibitors of cytokine induced gene expression. Flavonoids in the Living System: Springer; 1998.p.90,- 183 12. Sarkar FH, Li Y, Wang Z, Kong D. Cellular signaling perturbation by natural products. Cellular signalling. 2009;21:(11)7,-1541 13. Smith G, Griffiths L. Metabolism of myricitrin and 3,4,5 -trihydroxyphenylacetic acid. Biochemical Journal. 1970; 118(3): 53p. 14. Behrens J. Cross-regulation of the Wnt signalling pathway: a role of MAP kinases. Journal of Cell Science. 2000; 113(6): 9,-911 15. Eastman Q, Grosschedl R. Regulation of LEF-1/TCF transcription factors by Wnt and other signals. Current opinion in cell biology. 1999;11(2):40,-233 16. Seto ES, Bellen HJ. The ins and outs of Wingless signaling. Trends in cell biology. 2004;14(1): 53,-45 17. خزائی سهیلا، 1380، رهایی از سرطان، مشهد، انتشارات محقق فصل اول. 18. Maroun J, Kocha W, Kvols L, Bjarnason G, Chen E, Germond C, et al. Guidelines for the diagnosis and management of carcinoid tumours. Part 1: the gastrointestinal tract. A statement from a Canadian National Carcinoid Expert Group. Current Oncology. 2006;13(2):67. 19. Varricchio CG. A cancer source book for nurses: Jones & Bartlett Learning. Boston: p. 229. ISBN 2004, ;. 1-3276-7637-0 20. Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer research. 1998;58(22):57,-5248 21. Anand P, Kunnumakara AB, Sundaram C, Harikumar KB, Tharakan ST, Lai OS, et al. Cancer is a preventable disease that requires major lifestyle changes. Pharmaceutical research. 2008;25(9): 116,-2097 22. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA: a cancer journal for clinicians. 2011;61(2):90,-69 23. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet‐Tieulent J, Jemal A. Global cancer statistics, 2012. CA: a cancer journal for clinicians. 2015;65(2):108,-87 24. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA: a cancer journal for clinicians. 2015;65(1):29,-5 25. Thun MJ, DeLancey JO, Center MM, Jemal A, Ward EM. The global burden of cancer: priorities for prevention. Carcinogenesis. 2010;31(1):10,-100. 26. Bray F, Møller B. Predicting the future burden of cancer. Nature Reviews Cancer. 2006;6(1):74,-63. 27. Stewart B, Wild C, ed. "Cancer etiology". World Cancer Report 2014 World Health Organization ISBN 9283204298.2014. 28. Kuper H, Adami HO, Boffetta P. Tobacco use, cancer causation and public health impact. Journal of internal medicine. 2002;251(6):66,-455. 29. Sasco A, Secretan M, Straif K. Tobacco smoking and cancer: a brief review of recent epidemiological evidence. Lung cancer. 2004;45:s3-s.9. 30. Park S, Bae J, Nam B-H, Yoo K-Y. Aetiology of cancer in Asia. Asian Pac J Cancer Prev. 2008;9(3):80,-371. 31. Kushi LH, Byers T, Doyle C, Bandera EV, McCullough M, Gansler T, et al. American Cancer Society Guidelines on Nutrition and Physical Activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity. CA: a cancer journal for clinicians. 2006;56(5):81,-254 . 32. Pagano JS, Blaser M, Buendia M-A, Damania B, Khalili K, Raab-Traub N, et al., editors. Infectious agents and cancer: criteria for a causal relation. Seminars in cancer biology; 2004: Elsevier. 33. Cleaver JE, Mitchell DL. Ultraviolet radiation carcinogenesis. Cancer Medicine. 1993;18,-1:307. 34. IARC classifies radiofrequency electromagnetic fields as possibly carcinogenic to humans. press release N° 208.31 May 2011. 35. Roukos DH. Genome-wide association studies: how predictable is a person’s cancer risk? 2009;92,-4:389. 36. CFM m, JF H. Physical carcinogens. In: In Bast RC, Kufe DW, Pollock RE ea, editors. 5th Retrieved 27 january 2011 ed. holand-feri cancer medicine2000. 37. Henderson B, Bernstein L, Ross R. Chapter 13: Hormones and the Etiology of Cancer. Cancer medicine, 6th edn BC Decker, Hamilton. 2000. 38. Baylin SB, Ohm JE. Epigenetic gene silencing in cancer–a mechanism for early oncogenic pathway addiction? Nature Reviews Cancer. 2006;6 (2):16,-107. 39. https://www.aimatmelanoma.org/about-melanoma/other-lesions/moles-develop. 40. http://www.wallace.ir/userimages/DrJart/Epiderm.jpg. 41. http://www.promocell.com/fileadmin/promocell/Kapitelbilder/Melanocytes. 42. دانش پژوه مریم، 1375، مبانی بیماریهای پوست، تهران، انتشارات تیمور زاده، فصل 2 و 27. 43 Erdmann F, Lortet‐Tieulent J, Schüz J, Zeeb H, Greinert R, Breitbart EW, et al. International trends in the incidence of malignant melanoma 1953-2008 are recent generations at higher or lower risk? International Journal of Cancer. 2013;400,-385:(2)132. 44. Tarver T. Cancer Facts & Figures 2012. American Cancer Society (ACS) Atlanta, GA: American Cancer Society, 2012. 66 p., pdf. Available from. Journal of Consumer Health on the Internet.2012;16(3):7,-366. 45. http://www.healthtipswatch.com/avoid-skin-cancer-now-see-these-melanoma-warning-signs-and-images.html. 46. Payne AS, Cornelius LA. The role of chemokines in melanoma tumor growth and metastasis. Journal of Investigative Dermatology. 2002;118(6):22,-915. 47. Su DM, Zhang Q, Wang X, He P, Zhu YJ, Zhao J, et al. Two types of human malignant melanoma cell lines revealed by expression patterns of mitochondrial and survival-apoptosis genes: implications for malignant melanoma therapy. Molecular cancer therapeutics.2009;8(5):304,-1292. 48. Bill MA, Fuchs JR, Li C, Yui J, Bakan C, Benson DM, et al. The small molecule curcumin analog FLLL32 induces apoptosis in melanoma cells via STAT3 inhibition and retains the cellular response to cytokines with anti-tumor activity. Molecular cancer. 2010;9(165:1) 49. http://www.naturallyhealthyskin.org/diagnosis/diagnosing-melanoma-skin-cancer/. 50. Gordon R, editor Skin cancer: an overview of epidemiology and risk factors. Seminars in oncology nursing; 2013: Elsevier. 51. World Health Organization (WHO). Skin cancers. Available at: http://www.who.int/uv/faq/skincancer/en/print.html.Accessed November 23,2012. 52. Narayanan DL, Saladi RN, Fox JL. Review: Ultraviolet radiation and skin cancer. International journal of dermatology. 2010;49(9):86,-978. 53. Steliarova-Foucher E, O’callaghan M, Ferlay J, Masuyer E, Forman D, Comber H, et al. European cancer observatory: cancer incidence, mortality, prevalence and survival in Europe. Version 1,0 (September 2012) European Network of Cancer Registries, International Agency for Research on Cancer. eco iarc fr, accessed on. 2013;. 10 54. Coleman M, Gatta G, Verdecchia A, Esteve J, Sant M, Storm H, et al. EUROCARE-3 summary: cancer survival in Europe at the end of the 20th century. Annals of oncology. 2003;14 suppl 5:v128-v49. 55. Sant M, Allemani C, Santaquilani M, Knijn A, Marchesi F, Capocaccia R, et al. EUROCARE-4. Survival of cancer patients diagnosed in 1995-1999. Results and commentary. European Journal of Cancer. 2009;45(6):91,-931. 56. Mayer JE, Swetter SM, Fu T, Geller AC. Screening, early detection, education, and trends for melanoma: Current status (2007 -2013) and future directions: Part II. Screening, education, and future directions. Journal of the American Academy of Dermatology. 2014;71(4):611.e1-.e10. 57. Boniol M, Autier P, Boyle P, Gandini S. Cutaneous melanoma attributable to sunbed use: systematic review and meta-analysis. Bmj. 2012;345. 58. WHO International Agency for Research on Cancer Monograph Working Group (August 2009). "A Review of Human Carcinogens—Part D:Radiation". The Lancet Oncology 10(8):751-2. doi:10,1016/S 2045-1470(09)70213-X.PMID 19655431. 59. Yang CS, Landau JM, Huang M-T, Newmark HL. Inhibition of carcinogenesis by dietary polyphenolic compounds. Annual review of nutrition.406-381 :(1)21;2001. 60. Knekt P, Järvinen R, Seppänen R, Heliövaara M, Teppo L, Pukkala E, et al. Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. American Journal of Epidemiology. 1997;146(3):30,-223. 61. Wakai K, Ohno Y, Genka K, Ohmine K, Kawamura T, Tamakoshi A, et al. Risk modification in lung cancer by a dietary intake of preserved foods and soyfoods: findings from a case-control study in Okinawa, Japan. Lung Cancer. 1999;25(3):-14759. 62. Le Marchand L, Murphy SP, Hankin JH, Wilkens LR, Kolonel LN. Intake of flavonoids and lung cancer. Journal of the National Cancer Institute. 2000;92(2):60,-154. 63. Nakachi K, Suemasu K, Suga K, Takeo T, Imai K, Higashi Y. Influence of drinking green tea on breast cancer malignancy among Japanese patients. Japanese Journal of Cancer Research. 1998;89(3):61,-254. 64. Ramos S. Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. The Journal of nutritional biochemistry. 2007;18(7):-427. 65. Harborne JB, Williams CA. Advances in flavonoid research since 1992. Phytochemistry. 2000;55(6):504,-481. 66. Marais JPJ, Deavours B, Dixon R, D. F. The science of flavonoids Book 2007,1-46P 67. Bravo L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutrition reviews. 1998;56(11):33,-317. 68. Manach C, Williamson G, Morand C, Scalbert A, Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. The American journal of clinical nutrition.2005;81(1):230S-42S. 69. Jaime A, Remsberg CM, Takemoto JK, Vega-Villa KR, Andrews PK, Sayre CL, et al. polyphenols and flavonoids : an overview. 2013. 70. Borges C, Martinho P, Martins A, Rauter A, Ferreira M. Structural characterisation of flavonoids and flavonoid‐O‐glycosides extracted from Genista tenera by fast‐atom bombardment tandem mass spectrometry. Rapid Communications in Mass Spectrometry. 2001;15(18):7,-1760. 71. Pinheiro PF, Justino GC. Structural analysis of flavonoids and related compounds-a review of spectroscopic applications: INTECH Open Access Publisher; 2012. 72. Middleton E, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacological reviews. 2000;52(4):751,-673. 73. Torel J, Cillard J, Cillard P. Antioxidant activity of flavonoids and reactivity with peroxy radical. Phytochemistry. 1986;25(2):5,-383. 74. Wenzel U, Kuntz S, Brendel MD, Daniel H. Dietary flavone is a potent apoptosis inducer in human colon carcinoma cells. Cancer research.2000;60(14):31,-3823. 75. Di Pietro A, Conseil G, Perez-Victoria J, Dayan G, Baubichon-Cortay H, Trompier D, et al. Modulation by flavonoids of cell multidrug resistance mediated by P-glycoprotein and related ABC transporters. Cellular and Molecular Life Sciences CMLS. 2002;59(2):22,-307 . 76. Barron D, Di Pietro A, Dumontet C, McIntosh DB. Isoprenoid flavonoids are new leads in the modulation of chemoresistance. Phytochemistry Reviews. 2002;1(3):32,-325. 77. Lee-Hilz Y, Boerboom A-M, Westphal A, van Berkel W, Rietjens I, Aarts J. Mechanism of EpRE-mediated gene transcription by flavonoids. Toxicology Letters. 2007;172:S68-S9. 78. Lodovici M, Guglielmi F, Meoni M, Dolara P. Effect of natural phenolic acids on DNA oxidation in vitro. Food and Chemical Toxicology. 2001;39(12):-10,-1205. 79. Salti G, Grewal S, Mehta R, Gupta TD, Boddie Jr A, Constantinou A. Genistein induces apoptosis and topoisomerase II-mediated DNA breakage in colon cancer cells. European Journal of Cancer. 2000;36(6):802,-796. 80. Chun HS, Chang H-J, Choi EH, Kim HJ, Ku KH. Molecular and absorption properties of 12 soy isoflavones and their structure–activity relationship with selected biological activities. Biotechnology letters. 2005;27(11,-1105:15 81. Abalea V, Cillard J, Dubos M-P, Sergent O, Cillard P, Morel I. Repair of iron-induced DNA oxidation by the flavonoid myricetin in primary rat hepatocyte cultures. Free Radical Biology and Medicine. 1999;26(11):66,-1457. 82. Jakubowicz-Gil J, Paduch R, Piersiak T, Głowniak K, Gawron A, Kandefer-Szerszeń M. The effect of quercetin on pro-apoptotic activity of cisplatin in HeLa cells. Biochemical pharmacology. 2005;69(9):50,-1343. 83. Gupta S, Hussain T, Mukhtar H. Molecular pathway for (−)epigallocatechin-3-gallate-induced cell cycle arrest and apoptosis of human prostate carcinoma cells. Archives of biochemistry and biophysics. 2003;410(1):85,-177. 84. Kuo P-L, Lin C-C. Green tea constituent (–)epigallocatechin-3-gallate inhibits Hep G2 cell proliferation and induces apoptosis through p53-dependent and Fas-mediated pathways. Journal of biomedical science. 2003;10(2):27,-219. 85. Michels G, Wätjen W, Niering P, Steffan B, Thi Q-HT, Chovolou Y, et al. Pro-apoptotic effects of the flavonoid luteolin in rat H4IIE cells. Toxicology. 2005;206(3):48,-337. 86. Selvendiran K, Koga H, Ueno T, Yoshida T, Maeyama M, Torimura T, et al. Luteolin promotes degradation in signal transducer and activator of transcription 3 in human hepatoma cells: an implication for the antitumor potential of flavonoids. Cancer research. 2006;66(9):34,-4826. 87. Lee H-J, Wang C-J, Kuo H-C, Chou F-P, Jean L-F, Tseng T-H. Induction apoptosis of luteolin in human hepatoma HepG2 cells involving mitochondria translocation of Bax/Bak and activation of JNK. Toxicology and applied pharmacology. 2005;203(2):31,-124. 88. Abou‐Agag LH, Aikens ML, Tabengwa EM, Benza RL, Shows SR, Grenett HE, et al. Polyphenolics Increase t‐PA and u‐PA Gene Transcription in Cultured Human Endothelial Cells. Alcoholism: Clinical and Experimental Research. 2001;25(2):62,-155. 89. Singh AK, Seth P, Anthony P, Husain MM, Madhavan S, Mukhtar H, et al. Green tea constituent epigallocatechin-3-gallate inhibits angiogenic differentiation of human endothelial cells. Archives of Biochemistry and Biophysics. 2002;401(1):-29,-37. 90. Chung JH, Han JH, Hwang EJ, Seo JY, Cho KH, Kim KH, et al. Dual mechanisms of green tea extract (EGCG)-induced cell survival in human epidermal keratinocytes. The FASEB journal.2003;17(13):5,-1913. 91. Gong L, Li Y, Nedeljkovic-Kurepa A, Sarkar FH. Inactivation of NF-κB by genistein is mediated via Akt signaling pathway in breast cancer cells. Oncogene. 2003;22(30):9,-4702 92. Hertog MG, Hollman PC, Katan MB, Kromhout D. Intake of potentially anticarcinogenic flavonoids and their determinants in adults in The Netherlands1993. 93. Pereira T, Das N. Assay of liver cytosol lipoxygenase by differential pulse polarography. Analytical biochemistry. 1991;197(1):100,-96. 94. Tzeng S-H, Ko W-C, Ko F-N, Teng C-M. Inhibition of platelet aggregation by some flavonoids. Thrombosis research. 1991;64(1):100,-91. 95. Hanasaki Y, Ogawa S, Fukui S. The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radical Biology and Medicine. 1994;16(6):50,-845. 96. Chu S-C, Hsieh Y-S, Lin J-Y. Inhibitory effects of flavonoids on Moloney murine leukemia virus reverse transcriptase activity. Journal of natural products. 1992;55(2):83,-179. 97. Phillips P, Sangwan V, Borja-Cacho D, Dudeja V, Vickers S, Saluja A. Myricetin induces pancreatic cancer cell death via the induction of apoptosis and inhibition of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Cancer letters. 2011;308(2):8,-181. 98. Takemaru K-I, Fischer V, Li F-Q. Fine-tuning of nuclear β-catenin by Chibby and 3-14. Cell Cycle. 2009;8(2):3,-210. 99. Ichimatsu D, Nomura M, Nakamura S, Moritani S, Yokogawa K, Kobayashi S, et al. Structure‐activity relationship of flavonoids for inhibition of epidermal growth factor‐induced transformation of JB6 Cl 41 cells. Molecular carcinogenesis. 2007;46(6):45,-436. 100. Lee KW, Kang NJ, Rogozin EA, Kim H-G, Cho YY, Bode AM, et al. Myricetin is a novel natural inhibitor of neoplastic cell transformation and MEK1. Carcinogenesis. 1918:(9)28;2007. 101. Chen C-C, Chow M-P, Huang W-C, Lin Y-C, Chang Y-J. Flavonoids inhibit tumor necrosis factor-α-induced up-regulation of intercellular adhesion molecule-1 (ICAM-1) in respiratory epithelial cells through activator protein-1 and nuclear factor-κB: structure-activity relationships. Molecular Pharmacology. 2004;66(3):93,-683. 102. Ko C-H, Shen S-C, Lee TJ, Chen Y-C. Myricetin inhibits matrix metalloproteinase 2 protein expression and enzyme activity in colorectal carcinoma cells. Molecular cancer therapeutics. 2005;4(2):90,-281. 103. Lee KM, Kang NJ, Han JH, Lee KW, Lee HJ. Myricetin down-regulates phorbol ester-induced cyclooxygenase-2 expression in mouse epidermal cells by blocking activation of nuclear factor kappa B. Journal of agricultural and food chemistry. 2007;55(23):84,-9678. 104. Liu I-M, Tzeng T-F, Liou S-S, Lan T-W. Myricetin, a naturally occurring flavonol, ameliorates insulin resistance induced by a high-fructose diet in rats. Life sciences. 2007;81(21):88,-1479. 105. Gordon MD, Nusse R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. Journal of Biological Chemistry. 2006;281(32):33,-22429. 106. Kohn AD, Moon RT. Wnt and calcium signaling: β-catenin-independent pathways. Cell calcium. 46,-439:(3)38;2005 107. Habas R, Dawid IB. Dishevelled and Wnt signaling: is the nucleus the final frontier? Journal of biology. 2005;4(1):2. 108. angers s, Moon RT. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol 2009;10(7):77,-468. 109. MacDonald BT, Tamai K, He X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Developmental cell. 2009;17(1):26,-9. 110. Murali AK, Norris JS. The Role of E-Cadherin-Catenin Complex in Prostate Cancer Progression: INTECH Open Access Publisher; 2013. 111. Jansen SR, Van Ziel AM, Baarsma HA, Gosens R. β-Catenin regulates airway smooth muscle contraction. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2010;299(2):L204-L14. 112. Gosens R, Baarsma HA, Heijink IH, Oenema TA, Halayko AJ, Meurs H, et al. De novo synthesis of β-catenin via H-Ras and MEK regulates airway smooth muscle growth. The FASEB Journal. 2010;24(3):68,-757. 113. Orsulic S, Peifer M. An in vivo structure-function study of armadillo, the beta-catenin homologue, reveals both separate and overlapping regions of the protein required for cell adhesion and for wingless signaling. The Journal of Cell Biology. 1996;134(5):300,-1283. 114. Xu W, Kimelman D. Mechanistic insights from structural studies of β-catenin and its binding partners. Journal of cell science. 2007;120(19):44,-3337. 115. Verheyen EM, Gottardi CJ. Regulation of Wnt/β‐catenin signaling by protein kinases. Developmental dynamics. 2010;239(1);44,-34. 116. Lee E, Salic A, Kruger R, Heinrich R, Kirschner MW. The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway. PLoS Biol. 2003;1(1)E10. 117. Ye T, Fu AK, Ip NY. Emerging roles of Axin in cerebral cortical development. Frontiers in cellular neuroscience. 2015,:9. 118. Xing Y, Clements WK, Le Trong I, Hinds TR, Stenkamp R, Kimelman D, et al. Crystal structure of a β-catenin/APC complex reveals a critical role for APC phosphorylation in APC function. Molecular cell. 2004;15(4):33,-523. 119. Roberts DM, Pronobis MI, Poulton JS, Waldmann JD, Stephenson EM, Hanna S, et al. Deconstructing the sscatenin destruction complex: mechanistic roles for the tumor suppressor APC in regulating Wnt signaling. Molecular biology of the cell. 2011;22(11):63,-1845. 120. Fearnhead NS, Britton MP, Bodmer WF. The abc of apc. Human molecular genetics. 2001;10(7):33,-721. 121. Wu X, Tu X, Joeng KS, Hilton MJ, Williams DA, Long F. Rac1 activation controls nuclear localization of β-catenin during canonical Wnt signaling. Cell. 2008;133(2):53,-340. 122. Peters JM, McKay RM, McKay JP, Graff JM. Casein kinase I transduces Wnt signals. Nature. 1999;401(6751):50,-345. 123. Modak C, Chai J. Potential of casein kinase I in digestive cancer screening. World J Gastrointest Oncol. 2009;33,-1:26. 124. Doble BW, Woodgett JR. GSK-3: tricks of the trade for a multi-tasking kinase. Journal of cell science. 2003;116(7):86,-1175. 125. Kimelman D, Xu W. β-Catenin destruction complex: insights and questions from a structural perspective. Oncogene. 2006;25(57):91,-7482. 126. Martinez A. Preclinical efficacy on GSK‐3 inhibitors: Towards a future generation of powerful drugs. Medicinal research reviews. 2008;28(5):96,-773. 127. Gao C, Chen Y-G. Dishevelled: The hub of Wnt signaling. Cellular signalling. 2010;22(5):27,-717. 128. Bennett CN, Ross SE, Longo KA, Bajnok L, Hemati N, Johnson KW, et al. Regulation of Wnt signaling during adipogenesis. Journal of Biological Chemistry. 2002;277(34):1004,-30998. 129. Bikkavilli RK, Malbon CC. Dishevelled-KSRP complex regulates Wnt signaling through post-transcriptional stabilization of β-catenin mRNA. Journal of cell science. 2010;123(8):62,-1352. 130. He X, Semenov M, Tamai K, Zeng X. LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling: arrows point the way. Development. 77,-1663:(8)131;2004. 131. Cselenyi CS, Jernigan KK, Tahinci E, Thorne CA, Lee LA, Lee E. LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3's phosphorylation of β-catenin. Proceedings of the National Academy of Sciences. 2008;105(23);7,-8032. 132. Willert K, Shibamoto S, Nusse R. Wnt-induced dephosphorylation of axin releases β-catenin from the axin complex. Genes & development. 1999;13(14):73,-1768. 133. Zhang N, Wei P, Gong A, Chiu W-T, Lee H-T, Colman H, et al. FoxM1 promotes β-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis. Cancer cell. 2011;20(4):42,-427. 134. Krieghoff E, Behrens J, Mayr B. Nucleo-cytoplasmic distribution of beta-catenin is regulated by retention. J Cell Sci 2006;119(pt7):1453-63.2006. 135. Rosin‐Arbesfeld R, Cliffe A, Brabletz T, Bienz M. Nuclear export of the APC tumour suppressor controls β‐catenin function in transcription. The EMBO journal. 2003;22(5):13,-1101. 136. Shi Z, Qian X, Li L, Zhang J, Zhu S, Zhu J, et al. Nuclear translocation of β-catenin is essential for glioma cell survival. Journal of Neuroimmune Pharmacology. 2012;7(4):903,-892. 137. Staal FJ, van Noort M, Strous GJ, Clevers HC. Wnt signals are transmitted through N‐terminally dephosphorylated β‐catenin. EMBO reports. 2002;3(1):8,-63. 138. Gottardi CJ, Gumbiner BM. Role for ICAT in β-catenin-dependent nuclear signaling and cadherin functions. American Journal of Physiology-Cell Physiology. 2004;286(4):C747-C56. 139. Mosimann C, Hausmann G, Basler K. β-catenin hits chromatin: regulation of Wnt target gene activation. Nature reviews Molecular cell biology. 2009;10(4):86,-276. 140. Nusse R. The WNT homepage. URL: http://www stanford edu/∼ rnusse/wntwindow html. 2010. 141. Korinek V, Barker N, Willert K, Molenaar M, Roose J, Wagenaar G, et al. Two members of the Tcf family implicated in Wnt/β-catenin signaling during embryogenesis in the mouse. Molecular and cellular biology. 1998;18(3):56,-1248. 142. Chen B, Dodge ME, Tang W, Lu J, Ma Z, Fan C-W, et al. Small molecule–mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nature chemical biology. 2009;5(2):7,-100. 143. Kawano Y, Kypta R. Secreted antagonists of the Wnt signalling pathway. Journal of cell science. 34,-2627:(13)116;2003. 144. Liepinsh E, Bányai L, Patthy L, Otting G. NMR structure of the WIF domain of the human Wnt-inhibitory factor-1. Journal of molecular biology. 2006;357(3):50,-942. 145. Ahn VE, Chu ML-H, Choi H-J, Tran D, Abo A, Weis WI. Structural basis of Wnt signaling inhibition by Dickkopf binding to LRP5/6. Developmental cell. 2011;21(5):73,-862. 146. Ying X, Chen X, Feng Y, zi Xu H, Chen H, Yu K, et al. Myricetin enhances osteogenic differentiation through the activation of canonical Wnt/β-catenin signaling in human bone marrow stromal cells. European journal of pharmacology. 2014;738:22,-30. 147. Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic acids research. 2001;29(9):e45-e. 148. Liu J, Ding X, Tang J, Cao Y, Hu P, Zhou F, et al. Enhancement of canonical Wnt/β-catenin signaling activity by HCV core protein promotes cell growth of hepatocellular carcinoma cells. PLoS One. 2011;6(11):e27496. 149. Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P. Stabilization of β-catenin by genetic defects in melanoma cell lines. Science. 1997;275(5307);2,-1790. 150. Rimm DL, Caca K, Hu G, Harrison FB, Fearon ER. Frequent nuclear/cytoplasmic localization of β-catenin without exon 3 mutations in malignant melanoma. The American journal of pathology. 1999;154(2):9,-325. 151. Omholt K, Platz A, Ringborg U, Hansson J. Cytoplasmic and nuclear accumulation of β‐catenin is rarely caused by CTNNB1 exon 3 mutations in cutaneous malignant melanoma. International journal of cancer. 2001;92(6):42,-839. 152. Kielhorn E, Provost E, Olsen D, D'Aquila TG, Smith BL, Camp RL, et al. Tissue microarray‐based analysis shows phospho‐β‐catenin expression in malignant melanoma is associated with poor outcome. International journal of cancer. 2003;103(5):6,-652. 153. Lee DH, Lee CS. Flavonoid myricetin inhibits TNF-α-stimulated production of inflammatory mediators by suppressing the Akt, mTOR and NF-κB pathways in human keratinocytes. European Journal of Pharmacology. 2016;72,-784:164. 154. Ravishankar D, Rajora AK, Greco F, Osborn HM. Flavonoids as prospective compounds for anti-cancer therapy. The international journal of biochemistry & cell biology. 2013;45(12):31,-2821. 155. Baarsma HA, Königshoff M, Gosens R. The WNT signaling pathway from ligand secretion to gene transcription: molecular mechanisms and pharmacological targets. Pharmacology & therapeutics. 2013;138(1):83,-66. 156. Tarapore RS, Siddiqui IA, Mukhtar H. Modulation of Wnt/β-catenin signaling pathway by bioactive food components. Carcinogenesis. 2011:bgr305. 157. Miean KH, Mohamed S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. Journal of agricultural and food chemistry. 2001;49(6):12,-3106. 158. Xi Y, Chen Y. Wnt signaling pathway: Implications for therapy in lung cancer and bone metastasis. Cancer letters. 2014;353(1):16,-8. 159. Syed DN, Afaq F, Maddodi N, Johnson JJ, Sarfaraz S, Ahmad A, et al. Inhibition of human melanoma cell growth by the dietary flavonoid fisetin is associated with disruption of Wnt/β-catenin signaling and decreased Mitf levels. Journal of Investigative Dermatology. 2011;131(6):9,-1291. 160. Jung SK, Lee KW, Byun S, Kang NJ, Lim SH, Heo Y-S, et al. Myricetin suppresses UVB-induced skin cancer by targeting Fyn. Cancer research. 2008;68(14):9,-6021. 161. Gajos-Michniewicz A, Czyz M. Modulation of WNT/β-catenin pathway in melanoma by biologically active components derived from plants. Fitoterapia. 2016;92,-109:283. 162. Yasuhara R, Irié T, Suzuki K, Sawada T, Miwa N, Sasaki A, et al. The β-catenin signaling pathway induces aggressive potential in breast cancer by up-regulating the chemokine CCL5. Experimental cell research. 2015;338(1)31,-22. 163. Thakur R, Mishra DP. Pharmacological modulation of beta‐catenin and its applications in cancer therapy. Journal of cellular and molecular medicine. 2013;17(4):56,-449. 164. Garcia-Rostan G, Camp RL, Herrero A, Carcangiu ML, Rimm DL, Tallini G. β-catenin dysregulation in thyroid neoplasms: down-regulation, aberrant nuclear expression, and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis. The American journal of pathology. 2001;158(3):96,-987. 165. Ebert MP, Yu J, Hoffmann J, Rocco A, Röcken C, Kahmann S, et al. Loss of beta-catenin expression in metastatic gastric cancer. Journal of clinical oncology. 2003;21(9):14,-1708. 166. Mælandsmo GM, Holm R, Nesland JM, Fodstad Ø, Flørenes VA. Reduced β-catenin expression in the cytoplasm of advanced-stage superficial spreading malignant melanoma. Clinical Cancer Research. 2003;9(9):8,-3383. 167. Whitaker HC, Girling J, Warren AY, Leung H, Mills IG, Neal DE. Alterations in β‐catenin expression and localization in prostate cancer. The Prostate. 2008;68(11):205,-1196. 168. Xue G, Romano E, Massi D, Mandalà M. Wnt/β-catenin signaling in melanoma: Preclinical rationale and novel therapeutic insights. Cancer Treatment Reviews. 2016;12,-49:1. 169. Chien AJ, Moore EC, Lonsdorf AS, Kulikauskas RM, Rothberg BG, Berger AJ, et al. Activated Wnt/ß-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proceedings of the National Academy of Sciences. 2009;106(4):8,-1193. 170. Arozarena I, Bischof H, Gilby D, Belloni B, Dummer R, Wellbrock C. In melanoma, beta-catenin is a suppressor of invasion. Oncogene. 2011;30(45):43-4531. The evaluation of myricetin on the expression of β-catenin gene in melanoma cells (A375) Abstract: Background: cancer as one of the common diseases in the world, despite improving in the knowledge is expanding. Melanoma, a kind of malignant skin cancer, has high rate of fatality. Nowadays, because of chemical therapeutic side effects, natural products have attracted the attention of researches. Flavonoids, rich in plants and vegetables, are polyphenol compound with low molecular weight which have chemopreventive properties such as anti-cancer, anti-oxidant, anti- angiogenesis, and anti- inflammatory effect. Between different classes of flavonoids, myricetin due to its structure (hydroxyl groups and C=C bound) include more specifities. Wnt signaling pathway, a signaling pathway in melanoma cells contributes in initiation, proliferation, and differentiation. β-catenin as a key factor in this pathway could be considered a therapy target. Objective: This study aimed to evaluate the effect of myricetin flavonoid compound on the expression of β-catenin in melanoma cells (A375) Methods: In this study, the effect of myricetin on the expression β-catenin in melanoma cells (A375) was determined. So the cells were treated with different concentration of myricetin (0-100), to determine myricetin IC50 by MTT assay. After finding the best concentrations, the cells were treated with different concentration (40, and 60 µM) for 48 hour. After determined time, RNA was extracted, cDNA was synthetized and real time qPCR was done. Results: The results of MTT with different concentration (0 to 100 µM), showed that myricetin IC50 for three periods (24, 48, and 72 h) were 50, 40, and 35 µM respectively. Also we detected that up to 25 µM, myricetin has no toxicity on cells. So in order to determine the expression of β-catein, the cells were treated with 40, and 60 µM myricetin. The result of real time qPCR showed the expression of β-catenin gene has increased, so that following higher concentration of myricetin treatment, a moderate increment of β-catenin gene expression is seen. Conclusion: myricetin has anti- proliferative potential. Since A375 cells are malignant and metastatic, so the expression of β-catenin is spontaneously low, thus myricetin with inhibitory activity could increase the β-catenin expression and suppress the melanoma cells towards being metastatic. Suggestion: scine this study has been effective in invitro situation, it is necessary to search the effect of this product in invivo to acknowledge the inhibitory effect of myricetin. Also in order to enhance the half life of this product to be used along with other treatments, it is recommended to use it with nanoparticle. On the other hand, to determine the metastatic potential of A375 cells and the inhibitory effect of myricetin on the β-catenin expression, it is recommended 1. Determine the expression of β-catenin protein by Western blotting 2. Examine this flavonoid on other metastatic cells to be sure of its inhibitory effect, and 3. Determine the metastic potential of A375 cells based on the level of adherance.

Item Type: Thesis (Masters)
Subjects: R Medicine > RH Basic Medical Sciences
R Medicine > RP Paramedical > RP105 Biotechnology
Divisions: University Thesis > Faculty of Paramedicals > Biotechnology
Depositing User: Paramedicals School Students
Date Deposited: 04 Oct 2016 08:25
Last Modified: 14 Jan 2017 08:17
URI: http://eprints.qums.ac.ir/id/eprint/5186

Actions (login required)

View Item View Item