Biosensor-based clinical diagnosis

Under supervision: Dr. Gheibi
By: Nahid Qorbanzadeh
31 December 2017
overview

- Introduction
- Discussion
- Conclusion
- Reference

Biosensor-based clinical diagnosis
Biosensor: As an analytical device that can diagnose the interest analytically in a sample and measure it quantitatively.

Consisting of a biological recognition element and a physical transducer.
Introduction [1,2]

- **Biorecognition element**: responsible to specific recognition of an analyte of interest

- **Physical transducer**: converts the biorecognition event into a measurable **optical** or **electric** signal

- With wide range of applications, such as:
 - Clinical diagnosis
 - Environmental monitoring
 - Food safety, drug discovery

- The first biosensor (glucose biosensor) invented by Clark and Lyons (1962)
Nucleic acids
Immunological molecules (natural or engineered)
Enzymes and nonenzymatic receptors
Microorganisms

Electrochemical
- Potentiometric
- Amperometric
- Conductometric

Optical
- Absorbance
- Luminescence
- Surface Plasmon resonance
- Refractive index

Piezoelectric
- Quartz crystal microbalance
- Surface acoustic wave
- Bulk acoustic wave

Physical transducer

Biosensor-based clinical diagnosis
- Biorecognition element immobilization techniques in biosensor [4]
 - Microencapsulation
 - Entrapment in gel
 - Crosslinking
 - Covalent immobilization
 - Physical adsorption
Biorecognition element immobilization techniques in biosensor [4]

1. Microencapsulation:
Use an ineffective membrane (cellulose acetate, polycarbonate, collagen)

2. Entrapment in gel:
The biological material mixture with a solution of monomers then monomers polymerized to becomes gel(Polyacrylamide)
Biorecognition element immobilization techniques in biosensor

3. Crosslinking:
Biological material bind to a solid carrier or materials such as gel connected (multifunctional material such as glutaraldehyde)

4. Physical adsorption:
Exploiting non-covalent interactions (hydrophobic forces, ionic binding, hydrogen bonding, and van der Waals interactions)
5. Covalent immobilization:
 - Involves direct **covalent binding** (amine coupling and thiol coupling)
 - Use **working surfaces**:
 - Metals (gold, silver…)
 - Carbonaceous surfaces (graphene, glassy carbon)
Biosensors classification [2,3]

- Depending on **transducers nature**
 - Electrochemical biosensors
 - piezoelectric biosensors
 - Optical biosensors

- Depending on **recognition element nature**
 - Immunosensor
 - Nucleic acid-based biosensor
 - enzyme biosensors
 - Aptasensor

Biosensor-based clinical diagnosis
Biosensors depending on recognition element nature [5]

- **Immunosensor**: specific interaction of antibody with antigenic regions of an analyte (antibody as a biorecognition)

- **Nucleic acid-based biosensor**: the hybridization of known molecular Nucleic acid probes or sequences with complementary strands in a test sample

- **Enzyme biosensors**: relies upon a natural or fortuitous specificity of given enzymatic protein to react biochemically with a target substrate
Aptasensors: biosensors that the biorecognition section consist of aptamer [6]

- **Aptamer**
 - Single-stranded synthetic (RNA or DNA) oligonucleotide
 - Separation from aptamer libraries by SELEX Process
 - Formation different specific three-dimensional structures
 - Shape complementary binding to target

SELEX: systematic Evolution of Ligands by Exponential Enrichment
Biosensor-based clinical diagnosis

Selection of aptamers against a specific target [7]
Biosensors depending on transducers nature
Electrochemical biosensors

- Use electrode (gold, platinum, nickel) as transducer
- Enzyme electrochemical biosensors (oxidoreductase enzymes)
- Affinity electrochemical biosensors (NA, Ab...) labeled by an enzyme (phosphatase, peroxidase)
Electrochemical biosensors

- The biorecognition-analyt interaction cause change in potential (potentiometric) or current (amperometric) on electrode surface as output signal.

- As a function of, target analyte type or concentration.
A sandwich-type electrochemical immunosensor based on the biotin-streptavidin-biotin structure for detection of human immunoglobulin G

Yueyun Li¹,², Yihe Zhang¹, Liping Jiang³, Paul K. Chu³, Yunhui Dong² & Qin Wei⁴

A sandwich-type immunosensor is designed and fabricated to detect the human immunoglobulin G (HlgG) using polyaniline and tin dioxide functionalized graphene (GS-SnO₂-PAN) as the platform and biotin-functionalized amination magnetic nanoparticles composite (B-Fe₃O₄@APTES) as the label. GS-SnO₂-PAN is used as the sensing agent to capture the primary anti-HlgG (Ab₁) and SnO₂ reduces the stack of GS. The B-Fe₃O₄@APTES with a large surface area and excellent biocompatibility captures second antibody (Ab₂) efficiently based on the highly selective recognition of streptavidin to biotinylated antibody. The B-Fe₃O₄@APTES has better electro-catalytic activity in the reduction of hydrogen peroxide (H₂O₂) and the “biotin-streptavidin-biotin” (B-SA-B) strategy leads to signal amplification. Under optimal conditions, the immunosensor has a wide sensitivity range from 1 pg/L to 10 ng/L and low detection limit of 0.33 pg/L (S/N = 3) for HlgG. The immunosensor has high sensitivity, fast assay rate, as well as good reproducibility, specificity, and stability especially in the quantitative detection of biomolecules in serum samples.
Electrochemical biosensors

Biosensor-based clinical diagnosis
Piezoelectric biosensors [10,11]

- An acoustic wave or piezoelectric biosensor utilizes acoustic or mechanical waves as a detection mechanism

- Mass sensitive biosensors

- Made with thin piece of piezoelectric crystals such as quartz, lithium niobate, or lithium tantalite (generate acoustic wave)

- Consist of a parallel electrode (transducer) placed on both sides of the crystal
Piezoelectric biosensors

- **Piezoelectric effect**: production of electrical charges by the imposition of mechanical stress

- **Converse effect**: Applying an appropriate electrical field to a piezoelectric material creates a mechanical stress
Piezoelectric biosensors

Applying electrical field

Excited acoustic waves

Mechanical oscillation of acoustic wave

Change in oscillation frequency by analyte binding

Electrically measurement changes in mass, elasticity, conductivity in associate with Mass(analyte) attaches on crystal surface
Abstract

Surface acoustic wave (SAW) biosensors based on horizontally polarized surface shear waves enable label-free, sensitive and cost-effective detection of biomolecules in real time. Binding reactions on the sensor surface are detected by determining changes in surface wave velocity caused mainly by mass loading in the sensing layer. Typically, SAW devices are coated with biochemically sensitive layers including analyte-specific capture molecules (e.g., antibodies) or ligands. The covalent binding of antibodies to intermediate hydrogel layers (e.g., dextran or polyethylene glycol) tends to result in undirected orientation of capture molecules and leading to a lower signal response in a subsequent analyte binding experiment. Therefore, a coupling procedure was developed using two linkers, neutravidin and biotinylated protein A, allowing directed orientation of capture antibodies. This assembly enables label-free and direct detection of the breast cancer marker HER-2/neu at a concentration of 10 ng/ml (threshold: 13-20 ng/ml).

© 2010 Published by Elsevier Ltd. Open access under CC BY-NC-ND license.

Keywords: biosensors; label-free; immobilization; breast cancer; HER-2/neu
Piezoelectric biosensors [12]

Biosensor-based clinical diagnosis
Optical biosensors [2]

- Based on the measure changes of the incident light, arise the bioreceptor-target interaction

- Measured changes in:
 - Fluorescence
 - Surface plasmon resonance or refractive index
 - Absorbance

- Use fiber optic as transduction element made of glass or plastic
Optical biosensor

Biosensor-based clinical diagnosis
Fluorescence- based optical biosensors [14,15]

- **Fluorescence**: the process of light emission from excited species (Fluorophore)

- The **fluorescent markers** (coupled with bioreceptor) are excited by the incidental light from the evanescent wave

- Fluorescent **intensity**, as a function of biosensor-target interaction as well as target molecule concentration
1. Nanomaterials

- Semiconductor quantum dots
- Nanoscale metal clusters
- Organo-mineral nanocomposites

2. Molecular compound

- Organic compounds
 - Aromatic hydrocarbons (naphthalene, phenanthrene)
 - Amino acids (tryptophan, phenylalanine, tyrosine)
 - Fluorescein, rhodamine
- Inorganic compounds:
 - Uranyl ion (UO2 +)
 - Lanthanide ions (Tb3 + and Eu3 +)
- Organo-metallic Compounds
 - 8-hydroxy quinoline
FRET-based biosensors [16]

- **FRET**: a nonradioactive energy transfer process between two Fluorophores (donor and acceptor) located in close proximity to each other

- FRET-based biosensors genetically encoded
- Performance in live cell
- Used to visualize activity of cellular **signaling molecules** such as:
 - Ca2+, phospholipids
 - Small GTPase, protein kinases

FRET: Fluorescence resonance energy transfer
Main types of FRET fluorophores [17]

- Quantum dots
- Fluorescent proteins (FPs)
 - Cyan FP-yellow (CFP-YFP) Pairs
 - Green-red (GFP-RFP) FRET Pairs
 - Far-red FPs (FFPs) and infrared fluorescent proteins (IFPs)

FRET biosensors efficiency determined by:

- Fluorophores distance, orientation
- Proper spectral overlap of the donor emission and acceptor excitation,
FRET efficiency measurement methods: [17]

1. Ratiometric analysis
 Measure the acceptor/donor intensity ratio
2. Lifetime analysis
 Measure donor lifetime change

Two type of FRET biosensor:
Intermolecular biosensor
Intramolecular biosensor
- **Intermolecular biosensor** [18]

- Donor and acceptor fluorophores fused to different molecules

- When two proteins interact, bring the fluorophores into close proximity, so **increase the FRET efficiency**

Biosensor-based clinical diagnosis
Intramolecular biosensor

Donor and acceptor fluorophores conjoined to the same molecule

This type **preferred** because of:

- High signal-to-noise ratio
- Easy loading into the cells
- **Intramolecular biosensor** [19]

- Structure of an intramolecular FRET biosensor of small GTPase, Raichu
An aptamer-based biosensor for detection of thrombin using fluorescent quantum dots as labeling probes [20]

ABSTRACT

In this study, an aptamer-based single particle method was developed for the thrombin detection in human serum samples using fluorescence correlation spectroscopy (FCS). In this method, quantum dots (QDs) were used as the fluorescent probes and thrombin-binding aptamer (TBA) was used as molecular recognition unit. When two QDs probes labeled with TBA (QD-TBA1 and QD-TBA2) are mixed in a sample containing thrombin targets, the binding of targets will cause QDs to form dimers (or oligomers) with bigger sizes, which leads to the nearly double increase in the characteristic diffusion time of QDs in the detection volume of FCS. FCS method can detect the change in the characteristic diffusion time of QDs. Firstly, the diffusion and blinking behaviors of QD-TBA probes in the presence of thrombin were investigated by FCS and total internal reflection fluorescence microscopy (TIRFM) imaging system, and the experimental results documented that QD-TBAs were bound together with "one-by-one" structure when thrombin were added into the solution. And then, the assay conditions were optimized in order to improve the sensitivity and specificity of this method. Under the optimized conditions, the linear range of the method is from 5.0 nM to 500 nM of thrombin, and the limit of detection is about 2.6 nM. Finally, this method was applied to homogeneous determination of thrombin in human serum samples.

© 2015 Elsevier B.V. All rights reserved.
An aptamer-based biosensor for detection of thrombin using fluorescent quantum dots as labeling probes [20]

The linear relationships between the logarithm of the characteristic diffusion time ($\log \tau_D$) of QDs and logarithm of thrombin concentration ($\log C$)

The procedure of aptamer-based single particle method for homogeneous detection of thrombin. QDs were linked with aptamer (TBA1 and TBA2) using EDC as coupling reagent (a). The QD-TBA probes reacted with the different concentrations of thrombin or human serum samples and formed the dimer (b).
Surface Plasmon resonance (SPR)-based optical biosensors

- SPR: Collective oscillation of conduction electrons of in encounter with light

- Plasmonic metal nanostructures as optical-signal transducer
 - Metals:
 - Silver, copper, aluminum, gold, and etc.
 - Gold is preferred (chemical stability and free electron behavior)
Surface Plasmon resonance (SPR)-based optical biosensors

Transduction surface can be:

- Thin metal film
- Metal nanoparticle
Thin gold film SPR- biosensors [2]

- Is based on the interaction of light with a thin metallic film/solution dielectric interface.

 - Light of a certain wavelength impinges at a specific angle (SPR angle).
 - Causing a minimum in reflected light intensity (because of oscillations of mobile surface electrons).
Thin gold film SPR- biosensors [2]

- Resonance angle is sensitive to **refractive index** change (caused by analyt binding)

- **Resonance angle shift** (arise from refractive index change)
- provide information on the:
 - **Amount** of bound analyte
 - Analyt –bioreceptor affinity
Abstract: Viral diagnosis and surveillance are necessary steps in containing the spread of viral diseases, and they help in the deployment of appropriate therapeutic interventions. In the past, the commonly employed viral detection methods were either cell-culture or molecule-level assays. Most of these assays are laborious and expensive, require special facilities, and provide a slow diagnosis. To circumvent these limitations, biosensor-based approaches are becoming attractive, especially after the successful commercialization of glucose and other biosensors. In the present article, I have reviewed the current progress using the biosensor approach for detecting intact viruses. At the time of writing this review, three types of bioreceptor surfaces (antibody-, glycan-, and aptamer-based) have been explored on different sensing platforms for detecting intact viruses. Among these bioreceptors, aptamer-based sensors have been increasingly explored for detecting intact viruses using surface plasmon resonance (SPR) and other platforms. Special emphasis is placed on the aptamer-based SPR platform in the present review.
Thin gold film SPR- biosensors [21]
Metal nanoparticle SPR-based biosensors [22]

- Particles with dimensions 1-100 nm
- In different forms of spherical, rod, triangular

- Are widely used in diagnostic fields because of their advantages such as:
 - High surface/volume ratio
 - Traceable physicochemical properties (related to their shape, size and compound)
 - High stability
Nanoparticle SPR-based biosensors [22]

- **Gold nanoparticle** with:
 - Strong absorption band in the **visible** region of the electromagnetic spectrum
 - **Color change** associated with the size and SPR
 - Provide **visual colorimetric** detection methods
Gold nanoparticle-DNA (AuNP-DNA) colorimetric [23]

Its based on the use of target DNA, complementary Gold nanoparticle-modified probe

- **Cross-linking (CL) method:** using two type of nanoprobe

- **Non-Cross-linking (NCL) method:** using one nanoprobe or interference of bare nanoparticle in presence probe

Biosensor-based clinical diagnosis
Direct detection of Escherichia coli genomic DNA using **gold nanoprobe**s [24]

Figure 1 Schematic representation of working of AuNP-oligo probe assay.

a) In the presence of *Escherichia coli* genomic DNA, AuNP-oligo probes are stabilized and prevented from aggregation upon acid addition. Red color of the solution indicates presence of target DNA and hence **POSITIVE**.

b) In the presence of non *Escherichia coli* genomic DNA, AuNP-oligo probes loses its stability and tend to aggregate. Purple color of the solution indicates absence of target DNA and hence **NEGATIVE**.
Biosensor-based clinical diagnosis 46

- Conclusion

- Biosensors with:
 - High sensitivity and specificity, of nanoscale size
 - Cost-effective
 - Using a small volume
 - Continuous measurement
 - High speed and
 - Can be replaced with time-consuming and costly conventional methods to clinical diagnosis
References

2) Shankaran DR, Gobi KV, Miura N. Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensors and Actuators B: Chemical. 2007;121(1):158-77.

References

References

