بسم الله الرحمن الرحیم

ته نشینی ذرات درشت و کوچک در قانون استوک

دکتر احمد نیک پی
عضو هیئت علمی دانشگاه علوم پزشکی اورمیه
گروه بهداشت حرفه ای
تاریخ انتشار پاییز ۱۳۹۲
nikpey@gmail.com
منبع
مهندسی کنترل آلودگی هوای نوترو دنورز فصل هشتم

・http://aerosol.ees.ufl.edu/aerosol_trans/section07.html

هدف آموزشی
آشنایی با محدودیت‌های سرعت، تعیین سرعت طرح نشیه دیواره کچک در قانون استوک، تعیین سرعت طرح نشیه ذرات بزرگ در قانون استوک، آشنایی با ضریب تصحیح کاتالیزهای، آشنایی با فاکتور شکل دینامیک
قانون استوکس قادر به پیش بینی سرعت ته نشینی ذرات در اعداد رئنولدز کمتر از یک می‌باشد.

\[V = \frac{(\rho_p - \rho_g) d^2 g}{18 \eta} \]

\[10 \leq d \leq 1 \mu m \text{ و } \text{Re} < 1 \]
What is the maximum velocity of a particle to be in the Stokes regime?

0.1, 1, and 100 micrometers (\(g = 1.2 \, \text{kg/m}^3; \mu = 1.81 \times 10^{-5} \, \text{Pa s} \))

Fractals of the Stokes law:

- Particles at 10 nm: The velocity of the particle is very close to zero and remains relatively constant.
- Particles at 100 nm: The particle decelerates to zero, and then accelerates back to the maximum velocity, undergoing a significant amount of oscillation.

\[C_D = \frac{24}{Re} \]

- Stokes's law
- Transition region
- Newton's law
سرعت ته نشینی ذرات پررنگ تر از ۱۰ میکرون در قانون استوک

عدد رینولدز یک بوده و ذرات با سرعت یک‌تیتری ته نشین می‌شوند.

سرعت ته نشینی و عدد رینولدز ذره ای با قطر ۲۰۰ میکرومتر را محاسبه کنید?

سرعت ته نشینی مناسب با مربع قطر ذره است

\[V = \left(\frac{0.00605 \text{ cm}}{s} \right) \left(\frac{200 \mu}{1 \mu} \right)^2 = 2.42 \text{ m/s} = 7.94 \text{ ft/s} \]

\[Rp = \frac{D V \rho}{\mu} = \frac{200 \times 10^{-6} \text{ m} \times 2.42 \text{ m/s} \times 1.2 \text{ kg/m}^3}{1.8 \times 10^{-5} \text{ kg/m s}} = 32.3 \]
ذرات کوچک (1,0 تا 1 میکرون) در قانون استوک

Without Slip With Slip

با در نظر گرفتن فاکتور تصحیح CC، ذرات با فاکتور تصحیح کمیابی در نظر گرفته شده‌اند.

$F_D = \frac{3\pi \eta V d}{C_c}$

$C_c = 1 + \frac{2.52\lambda}{d}$

فاکتور تقریب برای ذرات با سایر یک میکرومتر است و به این معنی که سرعت آنه تا 15% سرعت نرمال می‌باشد.

پس از مقایسه بین نتایج قانون استوک است و قانون استوک است. .
فاکتور تصحیح لغزش

فاکتور تصحیح لغزش با افزایش سایز ذره کاهش می‌یابد.

<table>
<thead>
<tr>
<th>قطر ذره (میکرومتر)</th>
<th>آمتوسط فاصله آزاد ملکول ها (میکرومتر)</th>
<th>فاکتور لغزش C_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>6/0</td>
<td>25/77</td>
</tr>
<tr>
<td>0.01</td>
<td>6/0</td>
<td>3/9</td>
</tr>
<tr>
<td>0.01</td>
<td>3/0</td>
<td>1/15</td>
</tr>
<tr>
<td>10</td>
<td>6/0</td>
<td>1/15</td>
</tr>
<tr>
<td>10</td>
<td>6/0</td>
<td>1/15</td>
</tr>
<tr>
<td>100</td>
<td>6/0</td>
<td>1/15</td>
</tr>
</tbody>
</table>
برای ذرات با قطر کمتر از 1 \(0.1\) میکرومتر

\[C_c = 1 + \frac{\lambda}{d} \left[2.34 + 1.05 \exp\left(-0.39 \frac{\lambda}{d} \right) \right] \]

\[Re < 1 \sqrt{d_p} < 0.1\mu m \]

سرعت ته نشینی در عدد رینولدز کمتر از 1

\[V = \frac{(\rho_p)d^2gC_c}{18\eta} \]

\[V = V_{stock} \left(1 + \frac{\lambda}{d} \right) \]

سرعت ته نشینی ذره ای با قطر 1/100 میکرومتر را محاسبه کنید:

\[V = \frac{6.05 \times 10^{-7} m/s}{6.05 \times 10^{-7} m/s} \times 0.1728 \frac{0.7\mu}{0.1\mu} = 2.21 \]

\[V_{stock} \text{ تصمیم شده} \]

\[= 6.05 \times 10^{-7} m/s \times 2.21 \]

\[= 1.34 \times 10^{-6} m/s \]
توصیه فاکتور تصمیح کانینگهام ساده و پیشرفت محدوده کاربردی قانون استوک به ترتیب به ذرات ۱/۰ و کمتر از ۱۰ میکرومتر می‌رسد.

\[C_c = 1 + \frac{2.52\lambda}{d} \]

\[C_c = 1 + \frac{\lambda}{d} \left[2.34 + 1.05 \exp \left(-0.39 \frac{d}{\lambda} \right) \right] \]

آنرولس های غیر کروی

- قطرات مایع با قطرات کروی از ۱ میلیمتر و بیشتر، ذرات جامد کروی هستند، سایر ذرات غیر کروی هستند.
- برخی دارای شکل های هندسی منظمی نظیر مکعب (ذرات تک دیدگان)، استوانه‌ای (پیکری ها) و بالاتر (پیکر دار) هستند.
- ذرات به خصوص به حالت حاوی و حاصل از فرآیندهای مکانیکی شکل نامنظم دارند.
- فاکتور شکل دیافرگمی (α) برای اصلاح شکل ذره بر حاکم‌اند در قانون استوک وارد شده است.

\[V_{TS} = \frac{\rho_p d_e^2 g}{18 \eta \chi} \]

\[\chi = \frac{F_D}{3 \pi \eta V d_e} \]

\[F_D \] قطر حجم مایع
<table>
<thead>
<tr>
<th>شکل ذره</th>
<th>نسبت محوری (طول به عرض)</th>
<th>۵</th>
<th>۶</th>
<th>۷</th>
<th>۸</th>
<th>۹</th>
</tr>
</thead>
<tbody>
<tr>
<td>کره</td>
<td>۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>مکعب</td>
<td>۱/۸</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>استوانه</td>
<td>۱/۶۲۰۶</td>
<td>۱/۶۲۰۶</td>
<td>۱/۶۲۰۶</td>
<td>۱/۶۲۰۶</td>
<td>۱/۶۲۰۶</td>
<td>۱/۶۲۰۶</td>
</tr>
<tr>
<td>نوسه در محور عمودی</td>
<td>۱/۵۴۲۴</td>
<td>۱/۵۴۲۴</td>
<td>۱/۵۴۲۴</td>
<td>۱/۵۴۲۴</td>
<td>۱/۵۴۲۴</td>
<td>۱/۵۴۲۴</td>
</tr>
<tr>
<td>نوسه در محور افقی</td>
<td>۱/۶۴۲۳</td>
<td>۱/۶۴۲۳</td>
<td>۱/۶۴۲۳</td>
<td>۱/۶۴۲۳</td>
<td>۱/۶۴۲۳</td>
<td>۱/۶۴۲۳</td>
</tr>
<tr>
<td>نوسه در تمام جهات</td>
<td>۱/۶۴۲۵</td>
<td>۱/۶۴۲۵</td>
<td>۱/۶۴۲۵</td>
<td>۱/۶۴۲۵</td>
<td>۱/۶۴۲۵</td>
<td>۱/۶۴۲۵</td>
</tr>
<tr>
<td>زنجیره خطی</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>خوش متراکم</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>سه ذره کروی به هم چسبیده</td>
<td>۱/۱۵۶۶</td>
<td>۱/۱۵۶۶</td>
<td>۱/۱۵۶۶</td>
<td>۱/۱۵۶۶</td>
<td>۱/۱۵۶۶</td>
<td>۱/۱۵۶۶</td>
</tr>
<tr>
<td>چهار ذره کروی به هم چسبیده</td>
<td>۱/۱۷۶۷</td>
<td>۱/۱۷۶۷</td>
<td>۱/۱۷۶۷</td>
<td>۱/۱۷۶۷</td>
<td>۱/۱۷۶۷</td>
<td>۱/۱۷۶۷</td>
</tr>
<tr>
<td>گرو غبار زغال سنگ</td>
<td>۱/۱۵۶۶</td>
<td>۱/۱۵۶۶</td>
<td>۱/۱۵۶۶</td>
<td>۱/۱۵۶۶</td>
<td>۱/۱۵۶۶</td>
<td>۱/۱۵۶۶</td>
</tr>
<tr>
<td>گرد و غبار کوارتز</td>
<td>۱/۱۵۶۶</td>
<td>۱/۱۵۶۶</td>
<td>۱/۱۵۶۶</td>
<td>۱/۱۵۶۶</td>
<td>۱/۱۵۶۶</td>
<td>۱/۱۵۶۶</td>
</tr>
<tr>
<td>گرد و غبار ماسه</td>
<td>۱/۱۵۶۶</td>
<td>۱/۱۵۶۶</td>
<td>۱/۱۵۶۶</td>
<td>۱/۱۵۶۶</td>
<td>۱/۱۵۶۶</td>
<td>۱/۱۵۶۶</td>
</tr>
<tr>
<td>گرد و غبار نالک</td>
<td>۱/۱۵۶۶</td>
<td>۱/۱۵۶۶</td>
<td>۱/۱۵۶۶</td>
<td>۱/۱۵۶۶</td>
<td>۱/۱۵۶۶</td>
<td>۱/۱۵۶۶</td>
</tr>
</tbody>
</table>

متشکرم