Anesthesia Machines and Systems

Circle Anesthesia Machine

- should provide for elimination of CO2
- maintains directional gas flow
- allows artificial ventilation
Oxygen cylinder

“E” Cylinder is the size used with anesthesia machines

Compressed Gases (Oxygen)
- color coded
- 2000 psi (oxygen)
- 700 L. when full
- have pin index safety system
- “E” cylinder
- some gases support combustion (oxygen, nitrous oxide)
Nitrous Oxide

- compressed liquid
- 750 psi when liquid present
- analgesic
- relaxant
- more potent in humans
- used in 2-1 ratio with oxygen

Pressure gauge

Full oxygen tank = 2000 psi
Pressure reduction valve

Oxygen pressure reduced to 50 psi

Gas Pressure Regulators - Pressure Reduction Valves

- reduces high pressure in cylinder to 50 psi
- central supply oxygen pressure already reduced
Oxygen flowmeter

Measured in liters per minute

- Measures gas flow
- Oxygen flows should meet or exceed metabolic requirement
 - $2-3 \text{ ml/lb/min} = \text{ metabolic requirement}$
Vaporizer (out of the circle)

Used with halothane, isoflurane, and sevoflurane

Vaporizer (in the circle)

Used with methoxyflurane (currently not in US)
Factors affecting output of vaporizers

- Barometric pressure
- Temperature
- Carrier gas flow rate
- Back pressure

Classification of vaporizers

- Precision
 - “Tecs”
 - “Matics”
- Vapor
- Saturation

- Method of output regulation
 - Variable bypass
 - Measured flow
Classification of Vaporizers

- Method of vaporization
- Location
- Temperature compensation

One way valves
A Tidal Volume is estimated to be 5 ml/lb.

Rebreathing Bag

Recommended size = 30 ml/lb or 6 x tidal volume
CO₂ absorption Canister

Recommended size = 2 X tidal volume

CO₂ absorption

- two formulations - soda lime and baralyme
 - sodalime
 - 94% calcium hydroxide, 5% sodium hydroxide and 1% potassium hydroxide
 - baralyme
 - 80% calcium hydroxide and 20% barium hydroxide
CO2 absorption

- change absorbent after color changes 1/2 to 2/3
- change if granules are brittle
- “channeling” may be a problem

Pop off valve

Usually in the “open” position
Pop Off Valve

- can be either open or closed in a “closed” system (O2 flow rate = 2-3 ml/lb/min)
- should be open in a “semi-closed” system
- should be either closed or partially closed if you are artificially breathing for the patient

Scavenger
Bains Anesthesia System

- use oxygen flow rate of 100 ml/lb/min
- used with small patients
- no dead space
- no resistance to breathing

O₂ (with anesthetic)
Artificial Ventilation (IPPV)
- ventilation rate = 8-20 breaths/minute
- tidal volume = 5-10 ml/lb
- inspiratory pressure = 10-30 cm/H2O
- inspiratory time = 1 sec (2-3 sec in horses and cows)

Anesthesia Machines (Circle)
- Increased resistance
- Dead space
 - the rebreathing tubes are not part of the dead space
 - length of E-tube outside of mouth is considered dead space
- Oxygen flow rate
 - greater than 2-3 ml/lb/min
Anesthesia Machine (Closed)

- pop-off may or may not be closed
- flow rate is what determines classification
 - closed system = flow rate of 2-3 ml/lb/min
- economical
- no pollution
- heat conservation

anesthesia machine “closed”

- requires closer monitoring
- difficult to reanesthetize a patient that wakes up
- N2O difficult to use
- buildup of toxic materials