Anesthesia Machine Care and troubleshooting

Charlene J. Williams, CRNA, MSN
Assistant Professor
Anesthesiology Nursing

Florida International University
Hope, Knowledge, and Opportunity
Required Reading

Other collections from review books and notes
Happy is He who gains Wisdom from another’s Mishaps.
Anesthesia Safety

Where does the fault lie???

MAN VS. MACHINE
Primary system of anesthesia machine

- High Pressure (745-2200 psi)
- Intermediate Pressure (37-55 psi)
- Low pressure (16-25 psi)
Anesthesia Machine
(High Pressure System)

- Cylinder
- Hanger yoke (PISS)
- Filter
- Check valves
- Bourdon Type pressure gauge
- Pressure regulator
Anesthesia Machine (Intermediate Pressure)

- DISS
- Bourdon Type pipeline pressure gauge
- Ventilator pneumatic drive gas (O_2) source
- O_2 failure
- Secondary reducing valve
- O_2 flush valve
Anesthesia machine
(Low Pressure)

- Proportioning devices
- Flowmeters
- Vaporizers
Potential hazards of anesthesia machine and breathing system

- Hypoxia (hypoxia)
- Hypercapnia
- Hyperventilation
- Excessive Airway Pressure
- Fires
- Physical damage
- Latex allergy

- Inhaled foreign substance
- Anesthetic agent overdosage
- Inadequate anesthetic agent
- Inadvertent exposure to volatile agent
Potential hazards of anesthesia machine and breathing system

- **Hypoxia**
- Hypercapnia
- Hyperventilation
- Excessive Airway Pressure
- Fires
- Physical damage
- Latex allergy

- Inhaled foreign substance
- Anesthetic agent overdosage
- Inadequate anesthetic agent
- Inadvertent exposure to volatile agent
Hypoxia-Incorrect gas Supplied

- Piping system
- Cylinders
- Crossovers in the anesthesia machine
Hypoxia

- Incorrect gas supplied
- Hypoxic mixture delivered

- Loss of oxygen to atmosphere
- Air entrainment
Hypoxia

- Common transposition in piping itself
- Incorrect gas installed @ central supply
- Incorrect outlets installed inside the OR

- Incorrect connector maybe placed on the hose
- Pipeline inlet of the anesthesia machine
- Quick connect fittings may be damaged
Hypoxia (con’t)

- Quick connect fittings are poorly designed so that an incorrect connection can be made.
- Connections between piped gases can occur in the peripheral equipment.
- Air flowmeter may have an oxygen outlet connector.
- Crossover contamination occurred—100% FIO2 want administer.
Hypoxia r/t mixture delivered

- Flow control valve malfunction
- Incorrect flowmeter settings
- Incorrect flowmeter readings
- Inaccurate flowmeter
If you think that you have a hypoxic mixture------------------
What do you do ?
Hypoxia R/T

Hypoventilation-low inflow

- Pipeline problem
- Cylinder problem
- Machine problem
Hypoxia R/T Hypoventilation

- Low inflow
- Excessive outflow
- Blockage of the inspiratory pathway
Hypoxia (hypoventilation)-excessive outflow

- Breathing system leaks
- Disconnections
- Negative pressure applied to the breathing system
- Improper adjustment of the APL valve
Hypoxia (hypoventilation)

- Blockage of the inspiratory pathway
- What are the causes??
What is your response?

- Check ventilator settings
- Check ventilator bellows
 - 1. bellows don’t move
 - 2. bellows fills but fail to compress fully
 - 3. fail to fill
Incorrect placement of the PEEP valve
Potential hazards of anesthesia machine and breathing system

- Hypoxia
- **Hypercapnia**
- Hyperventilation
- Excessive Airway Pressure
- Fires
- Physical damage
- Latex allergy
- Inhaled foreign substance
- Anesthetic agent overdosage
- Inadequate anesthetic agent
- Inadvertent exposure to volatile agent
Hypercapnia

- Inadvertent administration of carbon dioxide
- Rebreathing without removal of carbon dioxide
Hypercapnia (cont) -
Rebreathing without removal of carbon dioxide

- Absorbent failure
- Bypassed absorbent
- Inadequate fresh gas flow to a mapleson system
- Improper assembly of the Bain system

- Unidirectional valve problem
- Problem with nonrebreathing valves
- Excessive dead space
Potential hazards of anesthesia machine and breathing system

- Hypoxia
- Hypercapnia
- **Hyperventilation**
- Excessive Airway Pressure
- Fires
- Physical damage
- Latex allergy

- Inhaled foreign substance
- Anesthetic agent overdosage
- Inadequate anesthetic agent
- Inadvertent exposure to volatile agent
Hyperventilation

- Hole or tear in the bellows can cause inadvertent hyperventilation
- Detection: increased oxygen concentration if oxygen is the driving gas or decreased concentration if air is used
What else can happen??

- Hyperventilation
- Excessive Airway pressure
 - Causes-high inflow
 - Causes-low outflow
Potential hazards of anesthesia machine and breathing system

- Hypoxia
- Hypercapnia
- Hyperventilation
- **Excessive Airway Pressure**
- Fires
- Physical damage
- Latex allergy

- Inhaled foreign substance
- Anesthetic agent overdosage
- Inadequate anesthetic agent
- Inadvertent exposure to volatile agent
Excessive Airway Pressure

- High Inflow
- Low Outflow
- Unintentional Peep
- Misconnection of Oxygen tubing
Excessive Airway Pressure---Causes of low outflow

- Obstruction in the expiratory limb
- At the ventilator
- At the APL valve
- In the scavenging system
- Nonrebreathing valves in resuscitators
What do you do??

- Detection
- Response
Potential hazards of anesthesia machine and breathing system

- Hypoxia
- Hypercapnia
- Hyperventilation
- Excessive Airway Pressure
- Fires
- Physical damage
- Latex allergy

- **Inhaled foreign substance**
 - Anesthetic agent overdosage
 - Inadequate anesthetic agent
 - Inadvertent exposure to volatile agent
Inhaled foreign substance

- Absorbent dust
- Ethylene oxide and glycol
- Parts of breathing system components
- Contaminated medical gases
- Foreign bodies
Potential hazards of anesthesia machine and breathing system

- Hypoxia
- Hypercapnia
- Hyperventilation
- Excessive Airway Pressure
- Fires
- Physical damage
- Latex allergy

- Inhaled foreign substance
- **Anesthetic agent overdosage**
- Inadequate anesthetic agent
- Inadvertent exposure to volatile agent
Anesthetic agent overdosage

- Tipping
- Vaporizer or N2O inadvertently turned on
- Incorrect agent
- Improper vaporizer installation
- Overfilled vaporizer
Potential hazards of anesthesia machine and breathing system

- Hypoxia
- Hypercapnia
- Hyperventilation
- Excessive Airway Pressure
- Fires
- Physical damage
- Latex allergy
- Inhaled foreign substance
- Anesthetic agent overdosage
- Inadequate anesthetic agent
- Inadvertent exposure to volatile agent
Inadequate anesthetic agent

- Decreased N2O flow
- Unexpected high O2 concentration
- Leak in vaporizer
- Empty vaporizer
- Incorrect agent in vaporizer

- Incorrect vaporizer setting
- Incorrect vaporizer mounting
- Damaged vaporizer
- Air entrained into breathing system
- Dilution by ventilator driving gas
Potential hazards of anesthesia machine and breathing system

- Hypoxia
- Hypercapnia
- Hyperventilation
- Excessive Airway Pressure
- Fires
- Physical damage
- Latex allergy

- Inhaled foreign substance
- Anesthetic agent overdosage
- Inadequate anesthetic agent
- Inadvertent exposure to volatile agent
More hazards

- Inadvertent exposure to volatile agent

- Fires and explosion
 - Factors
 - 1.
 - 2.
 - 3.
Potential hazards of anesthesia machine and breathing system

- Hypoxia
- Hypercapnia
- Hyperventilation
- Excessive Airway Pressure
- Fires
- Physical damage
- Latex allergy
- Inhaled foreign substance
- Anesthetic agent overdosage
- Inadequate anesthetic agent
- Inadvertent exposure to volatile agent
More hazards

- Physical damage
- Latex allergy
Malignant Hyperthermia

- Clinical presentation: tachycardia, tachypnea, and elevated ETCO2

- Must be distinguished from ventilator or unidirectional valve malfunction (respiratory acidosis), hyperthyroidism, cocaine intoxication, pheochromocytoma, and sepsis
Malignant Hyperthermia

- Triggers: succinylcholine and all inhaled volatile agents
- Safe anesthetics: barbituates, propofol, etomidate, ketamine, opioids, local anesthetics, catecholamines, N2O and all non-depolarizing muscle relaxant
Malignant Hyperthermia

- Treatment in the OR: high gas flow, hyperventilation, stopped inhaled agents
- Dantrolene 2.5mg/kg up to 10mg/kg
- Cooling by any means
Equipment checking

- High pressure system
 - Cylinder gas supply
 - Pipeline gas supply

- Low pressure system
 - Negative pressure
 - Positive pressure
 - Pressure gauge
 - Fresh gas line occlusion
 - Elapsed time pressure
Equipment checking

- Scavenging system
- Breathing system
Equipment checking

- Leak test for the bellow
- Ventilator safety relief valve
- Alarm check
- Unidirectional valves
Alarm devices

- Audible signals
 - High priority
 - Medium priority
 - Low priority

- False alarms
 - False negative
 - False positive
Hazards of ventilation

- Descending bellows
- Ventilation pressure relief valve failure
- Disconnect pilot line
- Ruptured valve
- Drive gas failure
- Electronic failure
- Misconnection
- Bellow leaks
- Utilized flush valve during mechanical ventilation
Hazards of ventilation

- Ventilation pressure relief valve failure
 - Hypoventilation: incompetent valve stuck open on inspiration leads to interface and scavenging interface and scavenging vacuum directly into breathing circuit

- Barotrauma: valve is stuck closed during exhalation
summary

- Machine check is the most important piece for patient safety
- If unsure, please ask
- If it doesn’t fit easily don’t force it
Electric hazards

Macroshock: gross amount of current experienced at body surface to intact skin (120V-household current)

Severity:
- Resistance of skin (1000’s to 1 million)
- Contact time
- Density of current (contact of current on skin)
Electric hazards

Microshock: small amount of current delivered internally by conduits

- Pacing electrodes
- CVP
- PA catheters
AC/DC

What is the difference?
Macroshock & Effect

1 sec contact time

<table>
<thead>
<tr>
<th>Current (mA)</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mA</td>
<td>tingling</td>
</tr>
<tr>
<td>5 mA</td>
<td>Maximum safety</td>
</tr>
<tr>
<td>10-20 mA</td>
<td>“Let go” threshold before muscle contraction</td>
</tr>
<tr>
<td>50 mA</td>
<td>pain</td>
</tr>
<tr>
<td>100-300 mA</td>
<td>V-fib</td>
</tr>
<tr>
<td>6000 mA</td>
<td>Resp muscle paralysis</td>
</tr>
</tbody>
</table>
Microshock & effect

1 sec contact time

<table>
<thead>
<tr>
<th>50-100 microA</th>
<th>V-fib</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 microA</td>
<td>Maximum current leak in equipment</td>
</tr>
</tbody>
</table>
Line Isolation Monitor (LIM)

- Monitors the integrity of isolated power system alarms when current flows to ground
 - Alarms @ 2-5 mA current leak
 - Leaks above threshold-trips the circuit breaker
Isolated power system

- Ungrounded system - main line are grounded
 - Secondary transformer-isolated transformer separated from the main hospital
- Purpose: macroshock prevention
 Short circuit activates ground wire
 Does not prevent microshock
Disinfectant inactivates HBV/CMV/HIV

<table>
<thead>
<tr>
<th></th>
<th>HBV/CMV-10 min @20 C</th>
<th>HIV- 10 @ 24 C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethyl ETOH</td>
<td>ineffectives</td>
<td>50%</td>
</tr>
<tr>
<td>Sodium hypoichlorite</td>
<td>1:10 solution</td>
<td>1:10 solution</td>
</tr>
<tr>
<td>Quaternary ammonium</td>
<td>ineffectives</td>
<td>0.08%</td>
</tr>
<tr>
<td>phenolic</td>
<td>ineffectives</td>
<td>0.05%</td>
</tr>
<tr>
<td>Isopropyl ETOH</td>
<td>70%</td>
<td>35%</td>
</tr>
</tbody>
</table>
OSHA Occupational Exposure Limits

- **Ethylene oxide**: 1 ppm 8 hours TWA
 - 5 ppm STEL or 15 min TWA

- **Glyteraldehyde (cidex)**: 0.2 PPM 8 hour TWA
Disinfection of anesthesia machine & equipment

- **EPA**: (primary) use only EPA registered disinfection
- FDA: regulates some chemical disinfectant
- **OSHA**: regulates occupational exposure to toxic levels
- CDC: makes recommendations for prevention—don’t regulate approve or test chemical germicides or sterilizer
Autoclaving

Steam sterilizing-old/most common method of sterilization that tolerates heat and humidity

- Best method for inactivation TB, HBV, CMV, HIV and Creutzfeldt-Jakob Disease (CJD)
CJD

- Extremely resistant to disinfection
- Steam sterilization 1 hour @ 132°C (best)
- Soak in Bleach 1 hour rm temp.
- Wipe surfaces bleach undiluted/diluted 1:10 dilution (15-30 min rm temp.)
 - Bleach is caustic
 - 1:10 solution----1 part bleach with 9 parts water
TB/ HEP B/ HIV

- Tuberculocidal agents adequate inactivating HBV/CMV
- HBV survives for several days
- HIV(?)-minutes
- Blood and Body fluids exposure is decreased by Clorox
- Clorox-effective and economical against HIV in a 1:10 solution